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Abstra& An approximate method for the study of one-particle diffusion in a three-dimensional 
(3D) disordered lattice is proposed. The method is based on the locator expansion of ageneralized 
dismte version of the diffusion equatibn. Approximations are performed through a convenient 
interpretation ofthe resulting equations in terms of known quantities that characterize a discrete- 
time random walk. The method is applied to a model of a disordered lattice in which allowed 
sites are randomly distributed in a continuum at a given concentration n and hopping is allowed 
between sites separated by a dislance not greater than a specified fixed value no. The results are 
in good agreement with the expected physical situation, showing the existence of two regions in 
the parameter space (n .  a,,), one of which is chmcteized by the existence of normal diffusion 
and the other by the vanishing of the diffusion constant, with the random walker confined in a 
cluster of finite size. The two regions are separated by a critical curve, along which the diffusion 
is shown to be anomdour;. The ulree different regimes are characterired by a single parameter, 
the average number of nearest neighbours. A cannection with percolation t h e w  is made, the 
formalism yielding values for the exponents y and V .  The results y = 2 and U = I are obtained 
in the 3D case. For dimensions greater than four it is shown Lhat the predicted critical exponents 
agree with the mean field values y = 1 and Y = f. 

1. Introduction 

There has been a growing interest in the problem of classical diffusion in disordered systems. 
This problem is relevant to a number of physical situations. Current applications include the 
study of electronic hopping transport in amorphous semiconductors (Scher and Lax 1973) 
and the modelling of tracer diffusion in glassy electrolytes (Brak and Elliott 1989). 

In the present work we shall be concemed with the problem of a single particle diffusing 
in an otherwise empty lattice. Several versions of this problem, with different types 
of disorder, have been investigated. Typical examples are the diffusion in lattices with 
forbidden sites (Kaski et ~l 1982) and various models of diffusion in lattices with random 
barriers (Haus and Kehr 1987). The main current theoretical approach to these systems is 
based on the application of a version of the coherent potential approximation (CPA), which 
is also known in this context as the effective medium approximation (EMA) (Webman 1981). 
As is well known the CPA is based on the propagator expansion of a Dyson-type equation 
and its practical implementation requires an ordered underlying lattice. Another possible 
expansion of the aforementioned equation is given by the so-called locator expansion (Ziman 
1979). In this form the resulting equation is particularly suitable for the implementation 
of approximate schemes to deal with spatially disordered lattices. Departing from this 
expansion Matsubara and Toyozawa (MT) (1961) proposed an approximate method for the 
investigation of the spectrum of a tight-binding Hamiltonian corresponding to a spatially 
disordered lattice. Our purpose here is to present a modified version of the MT scheme 
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appropriate to the treatment of a one-particle diffusion problem in a spatially disordered 
lattice. 

In the remaining part of this section we dizuss the relevant aspects of the model we shall 
consider. In section 2 the basic definitions pertinent to the proposed method are presented. 
An application to an ordered linear chain illustrates its general aspects. In section 3 a 
correspondence between continuous-time and discrete-time random walks is established. 
This correspondence provides a conceptual framework for the interpretation of relevant 
quantities that naturally appear in the method. Section 4 is dedicated to the application of 
the method to the model in consideration. In section 5 we discuss the implications of the 
results obtained in the previous section and derive the long-time behaviour of the particle 
mean-square displacement. A connection with percolation theory in a disordered lattice is 
made. Section 6 contains the concluding remarks. 

The model we shall consider is characterized by a particle performing a random walk in 
a lattice with allowed sites randomly distributed at a given concentration n .  The ‘dynamics’ 
of the system is described by the rate equation 

L F Perondi and R J EIliotr 

i 

where P,,,i is interpreted as the conditional probability of finding the random walker at site 
m at time f if it started at site i at time t = 0. The hopping rates J;] are assumed to be 
symmetrical and dependent only on the distance between sites i and j .  Due to the short- 
range nature of the hopping process, we will assume the following form for the hopping 
rates: 

if IR, - R,I < a0 

otherwise. 
Jij = [ 2 (1.2) 

Equation (1.2) is in fact the definition of nearest neighbour in the present system. We note 
that this equation also defines a percolation problem since depending on the concentration 
n of sites and the range a0 of the hopping rates there will exist or not an infinite percolating 
cluster of ‘connected’ sites. It is well known that the diffusion problem is intimately related 
to the percolation one since a particle departing from a given site will only have access 
to the sites connected to that site. The relation between the diffusion and the percolation 
problems is further explored in Section 5. 

For further reference we note that in the limit of high concentrations, here characterized 
by the inequality 4/3nao) >> I/n, a fair approximation to the diffusion constant is obtained 
by taking the configurational average of equation (1.1) and decoupling the average on the 
right-hand side. This approximation leads to the result 

Do = JoaiZ 

where 

is the average number of nearest neighbours. 
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2. The method 

The Laplace transform of equation (1.1) is given by 

~mi(~ii - ~ , i )  semi - Pmi(O) = 
I 

where 

Gmi = Pml(t)exp(-sr)dt. i 0 

The initial condition 

Pmi(0) = 6 m i  

implies the following normalization conditic 

1 
G d s )  = - S . 

m 

th Green 

(2.3) 

inctions G,i 

(2.4) 

By iterating equation (2.1) it is possible to obtain the following expressions for the diagonal 
q d  offdiagonal Green-function elements: 

. .  where 

The series appearing in equations (2.5). (2.6), (2.7) and (2.8) can be conveniently interpreted 
as a sum of an infinite number of weighted paths. Each path is labelled by a sequence of 
sites and is weighted in a systematic way by the hopping elements Ji, and the locators gj. 
We note for the time being that Eli can be interpreted as the sum of the weighted paths that 
link site i to itself with only one return to site i ,  while Cii is the sum of all the weighted 
paths that connect site i to itself. r:), on the other hand, can be interpreted as the sum of 
the weighted paths that connect site i to site m without any return to site i and Gmi is the 
sum of all the weighted paths that connect site i to site m. With further manipulation it is 
possible to rewrite equations (27) and (2.8) in the following form: 

I I I !  
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where the primes indicate that there is no repetition of summation indices in the multiple 
sums. The factors Gfi!,il*...' can be interpreted as the sum of the paths that connect 
site 1. to itself avoiding sites i, I , ,  12, .... Their formal definition is given by equations 
similar to equations (2.5) and (2.7). with the restrictions over (i, I , ,  12. ... ) incorporated into 
equation (2.7). 

Equations (2.5H2.10) arr similar to those obtained b MT with the exception that 
in their work the 'restricted' diagonal Green functions G$izs..-) were identified with the 
'unrestricted' diagonal Green function G;i. 

To illustrate the basic aspects of the method, we consider the case of an ordered infinite 
chain. In the case of a onedimensional lattice, due to the simple topology, equations (2.9) 
and (2.10) simplify and it is possible to work out a closed solution using equation (2.4). In 
particular equation (29) reduces to 

L F Perondi and R J E l h t t  

(2.11) 

On the other hand, equation (2.10) will have only one term corresponding to the direct path 
from site i to site m. A restricted Green function G is associated with each site except site 
i. Since the paths contained in each factor G exclude the sites already 'visited', G will be 
constituted by the sum of the weighted paths to the right or left, according to the position 
of site m with respect to site i, that begin and end at the particular site with which it is 
associated. In an infinite chain, all paths of such a collection associated with any particular 
site are equivalent and therefore all the factors G are equal. Let 

Since the hopping rates are also constant J;j = J, equation (2.10) reduces to 

r;,! = (G J)" (2.12) 

for each site m situated to the right or left of site i. For convenience we are considering 
site i as the origin for the labelling of the sites, i.e., site m is the mth site to the right or 
left of site i. Equations (2.4), (2.5), (2.1 1) and (2.12) define the following closed system of 
equations: 

(2.13a) 
(2.136) 

(2.13~) 

with EO = 25. Solving the system for G and Gii and making use of equations (2.12) and 
(2.6) the following expression for the Green functions G,i is found 

G m i  = { [S + Eo - J ~ ] / E O } ~ ( ~ - ) - ' .  (2.14) 

The inverse Laplace transform of equation (2.14) is given by 

Pmi = - exp(im0 - 2 J t [ l  -cos(0)])d6 = Im(2Jt)exp(-2Jt) (2.15) 

where I ,  denotes the modified Bessel function of order m. Equation (2.15). as is well 
known, is the solution of the difference equation (2.1) for the initial condition (2.3) in the 
case of an ordered infinite chain. 

2n 9 0 
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3. Discrete- and continuous-time random walk 

In this section we investigate the relation between a continuous-time random walk (C'r~w) 
and a discrete-time random walk (DTRW) performed on the same lattice. In a CTRW the 
probability that site j is visited in the time interval f, f + d t  is given by the probability that 
the random walker is occupying site j at time r multiplied by the probability that it suffers 
a transition out of this site in the subsequent time interval dt, i.e., f j j ( f ) Z J d t ,  where Z is 
the number of nearest neighbours and i denotes the site of departure at time f = 0. The 
average number of visits to site j is hence given by the integral of P j ; ( f ) Z J  from f = 0 to 
infinity. Let Qji (n) be the probability that a particle undergoing a random walk on the same 
lattice amves at site j from site i in n steps. The average number of visits to a given site, 
in this discrete version, in complete analogy to the continuous-time case, is given by the 
sum of the probabilities Q j ; ( n )  from n = 0 to infinity. In what follows we show formally 
that the average numbers of visits obtained in the two cases are equivalent and that this 
equivalence is a consequence of a general relation existing between the Laplace transform 
of the probabilities Pjj(t) and the generating functions for the probabilities Qji(n).  

The discrete-time probabilities satisfy the following recursive relation: 

(3.1) 
I 

where pjl is the probability for a transition from site I to site j. These latter quantities 
satisfy the normalization equation 

The generating function for the probabilities Q j i ( n )  is defined by 

(3.3) 

It is easily shown that these functions satisfy the equation 

Uji tZ)  sj; + 2 C p j ; ~ i i ( z )  (3.4) 
i 

where we have made use of the initial condition Qj; (O)  = 8 j l .  Comparing equations (3.4) 
and (2.1) we note that they have a similar structure. A brief analysis reveals that two 
cases have to be considered. If the total rate with which the particle leaves a given site is 
site-independent, i.e., 

then equations (3.4) and (2.1) are isomorphic, and their solutions are related by the following 
identifications: 

(3.6~) 
(3.6b) 
(3.6~) 
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If &I is site dependent, then the solutions are related only in the limit z -+ I-, s + Oc, the 
identifications being 

L F Perondi and R J Elliott 

(3.7u) 

J j l l E l  = P j l ,  (3.7b) 

The quantity on the left-hand side of equation (3.7~) is the integral of & j F j i ( t )  from zero to 
infinity and can be interpreted, as discussed before, as the average number of visits to site 
j for a random walker departing from site i .  The quantity U j i ( 1 ) .  on the other hand, is the 
equivalent quantity for a DTRW walk. 

We now turn our attention to the probability f i i ( n )  of a particle departing from site 
i arriving at site j for the first time after n steps. The generating function for these 
probabilities is defined by 

The relation between the generating functions U and F is a well known result of DTRW 
theory and is expressed by 

(3.9) u.. - 8..  
j 1  - + F j i u j / .  

In particular we have that 

Uii = 1/(1 - f i i ) .  (3.10) 

Comparing equation (3.10) with equation (2.5) and taking into account equation (3.7~) the 
following additional identification is obtained: 

Within the framework of DTRW theory, F , , ( I )  is interpreted as the probability of return to 
the origin. Evidently this same interpretation applies to the corresponding quantity in the 
CTRW theory. These analogies between U and C and between F and E play an important 
role in the interpretation of the results presented in the following sections. 

4. Disordered system 

In this section we extend the application of the formalism presented in section 2 to a 
3D spatially disordered lattice. The effects of disorder will be taken into account by 
considering the conditional ensemble average of the relevant quantities. The averages 
will be performed assuming that Ns allowed sites are randomly distributed in a volume 
Q. The limit N, -+ 00, s2 -+ 00 with N J Q  finite is implicitly considered throughout the 
calculations. It will also be assumed that the allowed sites are distributed in a statistically 
independent way. All correlations that arise when a finite volume is associated to each site 
are thus disregarded. Another important aspect of the averaging procedure concerns the 
average over the distribution of clusters. Depending on the values of the concentration n 
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of allowed sites and of the range a0 of the hopping rates the system will present or not an 
infinite percolating cluster. Let Pw be the probability that a randomly chosen site belongs 
to the infinite percolating cluster and nt be the number of clusters with k sites normalized 
by the total number of allowed sites. Since the origin of the random walk can be either 
inside a finite. cluster of any size or inside the infinite percolating cluster, it is clear that 
quantities such as r$, which depend explicitly on the number of sites linked to the origin, 
should be averaged simultaneously over the disorder in the position of the allowed sites and 
over the distribution of clusters, i.e., 

where T$(k) denotes the value of the respective series for a cluster with k sites. Since 
the distribution of clusters is not known, we will adopt a kind of EM assuming that the 
average in the above equation can be replaced by 

(ii - ( r : ! (N))  below the percolation threshold 
above the percolation threshold I (r:)(co)) rmi) - 

where N is an effective cluster size to be determined self-consistently from the formalism. 
The percolation threshold will be characterized by the divergence of N. Subsequently N 
will be interpreted as the average number of sites in the finite clusters below the percolation 
threshold 

Taking into account the above considerations the ensemble averages of equations (2.3, 
(2.6). (2.9) and (2.10) will be approximated by 

(C i f )  = I/(s + ( E ; )  - (&)) (4. l a )  

(cmi) = (r:;)(cij) (4.lb) 

(Xi;) = n  Jii(G~~’)JlidR(+nZ J ; I ( G ~ ~ ~ ” ) J ~ ~ , ( G ~ ~ ~ , ) J ~ , ; ~ R ~ ~ ~ ,  +... (4.1~) 

(4.ld) (r:)) = Jmi(GEb) + n ~(G$~’)Jmf(G$’)Ji; dR, 

J ss 
+ n 2 ~ ~ ( G ~ ~ i t ’ ) J ~ l ( C j j . ’ “ ) J i ~ , ( G ~ ~ , ) l , , i d R i d R , ,  + ... 

where n is the concentration of allowed sites. In the above expressions it is implicit that 
all the averages are conditional ones, in which some sites are maintained fixed during the 
averaging procedure. Within the notation we are using they coincide with the sites denoted 
by the subscript and superscript indices. For example, (Cl:) is defined by 

In the derivation of equations (4.1), decoupling approximations were used. We expect 
these approximations to be of reasonable accuracy in the high-concentration regime, when 
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fluctuations in the considered stochastic variables are in general small when compared to 
their average values. 

L F Perondi and R J Elliott 

According to the discussion of section 3, we can interpret the limit 

lim ( E ; ) ( “ ; ; )  
$-bO+ 

(4.2) 

as the average number of retums to site i for a random walk that begins at this same site. In 
three dimensions for the cubic Bravais lattices SC, BCC and FCC this limit has the approximate 
value 1.51, 1.39 and 1.34, respectively. We note that this value approachs unity with 
increasing number of nearest neighbours. For a disordered lattice in the high concentration 
regime, when an infinite percolating cluster is present, we expect the corresponding quantity 
to have a value very close to unity. The restricted Green functions, on the other hand, satisfy 
the following inequalities: 

(4.3a) 
(4.3h) 

in the limit s + Ot. Therefore, in this limit and for large concentrations all restricted Green 
functions have the same order of magnitude, their values being spread over a narrow band 
between the values of (G;i) and I/(&;). Taking this fact into account we expect that the 
approximation of considering all the restricted Green functions to be equal to the same site- 
independent value will not substantially affect series (4.1~) and (4.ld). This common value 
will be determined, following the example in section 2, by requiring that the normalization 
equation (2.4) is satisfied. Within this approximation, series (4.1~) and (4.ld) are easily 
summed by Fourier transformation. The resulting set of equations is 

(“ i i )  = l/(s + EO - (xi;)) (4.4a) 

(m # i) (4.4b) exp(iK. Rm;) dK JW) “ I  1 - nGJ(K)  

where C is the common value attributed to the restricted Green functions and 

J ( K )  = J(R)exp(-iK. R)dR 

E O = { & ! )  =nJ (K=O)=nJ (O) .  
s 

(4.4d) 

(4.4e) 

(4.4f) 

Rigorously, after the averaging procedure we would have to work with probability densities, 
since the positions are now continuous. The density corresponding to a given quantity is 
obtained by multiplying its value by the concentration n.  For the sake of economy of 
notation, we will continue to work in a discrete space makiig the following replacements 

wherever necessary. Another observation concerns the hopping rates. It is assumed that 
there is no possibility of the random walker making a transition to the same site, i.e., the 
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element J i ;  is considered to be zero. In order to be consistent with this fact, the definition 
(1.2) should be interpreted as 

Jo if E cl& - RjI <a0 J . .  - 
4 0  otherwise 

with the limit E --+ 0 implicit in all the calculations. From equations (4.4) and takiig 
into account the above remarks, the requirement of probability conservation, equation (2.4). 
assumes the form 

[ l / ( l  - C E O )  - G ( z ; ; ) ] ( G i ; )  = l/s. (4.5) 

Equations (4.5). (4 .4~)  and (4.4d) constitute a closed set of equations, the solution of 
which yields all the quantities of interest In the remaining pan of this section we derive 
the expressions for the mean square displacement and the diffusion constant and discuss 
qualitatively their behaviours in the long-time regime. We reserve the next section for a 
more detailed discussion. 

The mean square displacement can be obtained from the Fourier transform of (Gmj) 

G K ( s )  = (G,;)exp(-iK R,i)dR,; s 
noting that 

V~GKIO = - / ~ % i l z ( ~ m i ( s ) ) d ~ , i .  

On the other hand, from the definition of the mean square displacement we have 

( R Z $ ) )  = l%;lz(Gmi) n j l&l’(Gm;)d&i. 
m 

Comparing equations (4.6b) and (4.7) it follows that 

( R * ( s ) )  - n V g G ~ l o .  

The Fourier transform of the hopping rate defined by equation (1.2) is given by 

J(K)  = (4xJ0/K~)[sin(Kno)/K - aocos(Kao)]. 

From equations (4.4). (4.5), (4.8) and (4.9) it can be shown that 

( R Z O ) )  = 6G(Gi;)(I /s(Gii) - G(Zii))’Do 

(4.6~) 

(4.6b) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

where 00 is the high-concenbation-limit value of the diffusion constant given by 
equation (1.3). The time derivative of the long-time mean square displacement is then 
given by 

%Im = lim s 2 ( R z ( s ) )  = 6 lim 
r-0+ 

(4.11) 
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since the product C(Z;;) tends to a finite value fors -+ Of. The diffusion constant is hence 
given by 

L F Perondi and R J EIliotf 

(4.12) 

In order to obtain a first impression of the results, we can solve equation (4.5) approximately 
for G, by noting that in the limit s -+ Of the product G Z j i  can be disregarded since, as 
observed above, it tends to a finite value in this limit. Within thii approximation we have 

and consequently 

D = ( 1  - (Zii(O))/&o)Do. (4.14) 

According to the interpretative scheme introduced in section 3, (Cii ) /&g is interpreted as 
the probability of retum to the origin. Equation (4.14) hence expresses the plausible result 
that in a disordered 3D lattice the diffusion constant is proportional to the probability of the 
random walker ‘escaping’ from the origin. 

5. Discussion 

Equations (4.4) and (4.5) define a self-consistent equation for the quantity (E;;). In order 
to investigate the solutions of this equation it is convenient to introduce the variable 

m = l f G & o - l .  

In terms of this variable, the self-consistent equation for (E;i(s)) assumes the form 

We note that since 

J(0)  > J ( K )  

the integrand in equation (5.1) is non-singular for m > 0. Furthermore, for a spherically 
symmetrical hopping rate J(R), the behaviour of J(K) for small IKI is proportional to 
lKlz and the integrand is also non-singular for m = 0. The integral attains its maximum 
value for m = 0. Let us define a concentration value n,  such that 

For n < n,, it can be shown that the solutions of equation (5.1) for s = 0 are such that 
m > 0 and consequently 

( C i i ( 0 ) )  = nJ(0 )  (n < nc). (5.3) 
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For n > n,, the solutions have the form 

s / m  = C(s) 

where C(s) is such that C(0) is finite. It is easily checked that 

C(0) = (n  - n,)J(O) 

and consequently 

( M O ) )  = n,J(O) (n > nc). 

In terms of the variable m, we also have that 

6867 

(5.4) 

Introducing these results into equation (4.12) we obtain 

From this result we conclude that the value n. defined by equation (5.2) has the interpretation 
of a critical concentration below which there is no diffusion. Later, it will be shown that 
according to the present formalism the diffusion is anomalous only at n = n,. We note that 
in the limit of high concentrations n >> n,, the predicted diffusion coefficient reduces to the 
continuum limit DO. Fmm equation (5.2) it can easily be seen that the critical concentration 
n,  is independent of the amplitude JO of the hopping rates. This result is consistent with the 
fact that n, should depend only on the geometrical characteristics of the underlying lattice. 

Both the concentration n of allowed sites and the range a0 of the hopping rates are 
independent parameters of the model. On physical grounds, one expects that, for a fixed 
concentration of allowed sites, there should exist a critical value of the hopping range 
above which the system has a finite diffusion constant and vice versa. Hence, we expect 
equation (5.2) to define a curve in the parameter space separating a ‘diffusive’ region 
from a ‘non-diffusive’ one, which resembles a critical curve in a two-phase system. From 
equations (4.9) and (5.2) it can be. shown that such a ‘critical’ curve is given by 

(5.7a) 

j ( k )  = sin(k) /k  - cos(k). (5.7b) 

The quantity on the left-hand si& of equation (5.7~)  can be interpreted as the average 
number of nearest neighbours Z, along the critical curve. Hence the two ‘phases’ can be 
characterized by a single parameter, namely the average number of nearest neighbours-the 
system displaying a diffusive behaviour for Z > Z,. Numerical evaluation of the integral 
on the right-hand side of equation (5.7~) leads to the value Z, - 4.47 for the present 
model. More precise calculations of the percolation limit in this model by Pike and Seager 
(1974) give Z, - 2.9 using computer simulation and those by Haan and Zwanzig (1977) give 
2, N 3.05 from series expansion. Some comparisons can also be made with ordered lattices. 
The probabilities of retum to the origin for SC, BCC and FCC lattices are approximately 
given by 0.34, 0.28 and 0.26 (Montroll 1964), respectively. The corresponding quantities 
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for disordered lattices which have on average the same number of nearest neighbours are in 
this approximation 0.74.0.56 and 0.37, respectively. Hence, as one would expect. disorder 
has the effect of confining the random walker, the effect being more accentuated the lower 
the coordination number. 

We next investigate the long-time behaviour of the probability (P;i( t ) )  of the random 
walker being at the origin and the mean square displacement for Z < 2,. Z = Z ,  and 
Z > Z,. A connection with percolation theory is made. One remarkable feature of the 
formalism is that although the hypotheses used in deriving the principal equations apply 
rigorously to the limit Z > Z,,  the picture that emerges from extrapolation to the region 
Z < 2, is consistent with what one would physically expect. We therefore present the 
results for this region, with the warning that a strictly formal justification for them has 
not been established. In order to simplify the presentation, the following equations, unless 
explicitly stated, will be presented in a dimensionless form, J;’ and being used as the 
unities of time and distance, respectively. Most of the results are based on the fact that for 
three dimensions, in the limit m 3 0+, equation (5.1) can be rewritten as 

L F Perondi and R J Elliot1 

(&(s)) = ( Z  - s / m ) ( i  + m ) Z / [ ( I  + m ) Z  - SI = Z ,  - A&. (5.8) 

where A = ym. The derivation of this result is presented in appendix A. From this 
result it is possible to obtain the behaviour of the solutions for various limits. 

From the previous results, it can be shown that for Z c Zc, the long-time behaviour of 
the conditional probability (P i i )  is finite and given by 

m d m o  + 1) 
(mo + I)mo + 1 

(Pi;) = lim s (Ci i ( s ) )  = 
S-.O+ 

(5.9) 

where m o ( Z )  is the solution of equation (5.8) for s -+ O+. A finite value of (P;,) for 
I -+ M. means that for Z < Z ,  the random walker is on average confined to a finite cluster. 
Fulthermore, since the hopping rates are symmetrical and to the level of approximation in 
which we are working fluctuations in the number of nearest neighbours are neglected, we 
can interpret (P i i )  as the inverse of the average number of sites in the cluster. Within this 
interpretation, the quantity 

N ( Z )  = [(ma + 1)mo + I ] / m ~ ( m o  t 1) (Z < Z d  (5.10) 

is the average number of sites in a cluster to which a randomly selected site belongs, since 
the origin is arbitrary. Since for Z -+ Z ,  from below mo(Z)  approaches zero, N ( Z )  diverges 
at the critical value 2,. This result provides a connection with percolation theory, 2, being 
interpreted in this context as the critical number of nearest neighbours for percolation in the 
present system. From equation (5.8). it is easily seen that in the limit Z -+ 2,. m o ( Z )  has 
the asymptotic behaviour 

m o ( z )  = [(z - z$A]’. (5.1 I )  

Hence N ( Z )  diverges with an exponent of two for Z + Zc. From equation (5.8) it can be 
shown that up to the first correction in s, we have 

m = mo + Z r / f i A  (5.12) 
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where mo is given by equation (5.1 1). From this result and equation (4.10) it can be shown 
that the mean square displacement has the following long-time behaviour for 2 near Zc: 

(R’( t ) )  = R&[I -exp(-t/T)] (5.13a) 

where 

(5.13b) 

(5.13~) 

Hence, the mean square displacement of the random walker also diverges with an exponent 
of two as Z approaches Z,. The quantity .$ = a can be interpreted as a measure of the 
average size of the finite cluster to which the origin is linked. Hence, near the percolation 
threshold this quantity diverges with an exponent of one. In appendix B, some aspects of 
the extension of the formalism to the region Z < Z, are discussed. 

Right at the percolation threshold, the solution of equation (5.8) for s + O+ has the 
asymptotic behaviour 

m, N- (s/A)’/’ 

implying that 

( C i i ( ~ ) )  Y Z, - A(s/A)’l3. 

As a consequence we obtain 

(Gii) E S-” (R’O)) Y s - ” ~  

showing that 

( P i i )  E t-”3 

(R2(r ) )  Y r2I3 

(5.14a) 
(5.14b) 

for long times. Therefore at Z = Z, the random walker is not confined in a finite cluster 
but, on the other hand, its mean square displacement increases with an exponent in time 
instead of the exponent of one that characterizes normal diffusion. Hence at Z = Z, the 
diffusion is anomalous. 

For Z t Z,,  the solution to equation (5.8) has the following asymptotic behaviour in 
the limit s -+ 0+: 

m = s / ( Z  - z c ) .  (5.15) 

From this result it is readily shown that in this limit 

(Gii(s))  

( R Z ( s ) )  E (6/sZ){ 1 - (ZJZ) + ( l / Z ) [ s / ( Z  - Z c ) ] ’ / ’ ) ~ o .  

I/[ (Z - Zc) + A[s/(Z - Z C ) ] ” ~ )  

The corresponding long-time behaviours are given by 
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where a = (Z-Z,)’/’/A and ERFC is the complementary error function. A noteworthy point 
is the prediction of a contribution to the long-time mean square displacement proportional 
to t 1 l2  that becomes increasingly important as Z -+ Z,. By expanding the ERFC function 
in equation (5.16a) it is shown that the dominant contribution in the long-time regime is 
expressed by 

L F Perondi and R J Elliot1 

( P j j ( f ) )  = [z/n(z - Zc)]1/(4nDt)3~ (5.17) 

where D is the dimensionless diffusion constant 

D = $(Z - ZC). (5.18) 

Therefore the dominant contribution to (Si) is proportional to I-’/’ as is usual in normal 
diffusion. 

As a final point, we investigate the long-time behaviour of the conditional probabilities. 
From equations (4.4~).  (4.13), (5.1) and (5.76) the following expression is obtained for the 
off-diagonal Green-function elements: 

(5.19) 

In the derivation of this result, equation (5.1) was approximated by 

( Z ; ; ) = Z - s / m .  (5.20) 

This equation is asymptotically correct in the limit of small values of m and s. For small 
values of m and large values of IRI, the main contribution to the integral in equation (5.19) 
comes from the region [KI N 0. Expanding J ( K )  up to fourth order and performing the 
integral, the following result is obtained: 

(G,i) = (I/s4~n)K~[exp(-KoI~,il)]/KolRmil (5.21~) 

where 

KO = &. (5.216) 

Using the previous results for m in the regions Z c 2,. Z = 2, and Z > Z, the following 
expressions are obtained: 

W,;) = (l/s4nn)10[(Zc - Z)/A]2Uex~(-fi[(Zc - ~ ) / A ] l % ~ l ) D / l ~ m ; l  

(C,i) = (l/4rrn) ( 10/A2”) (exp[-d%(s/A)’/’ If?,,,! I ]  ] /~‘/’l&,,~ I (2 = 2.) (5.22b) 

( C m i )  = ( I / ~ ~ ~ ) { ~ ~ P [ - ( ~ / D ) ~ ” I % ; I ] } / D I R ~ ~ I  (Z > Zc). ( 5 . 2 2 ~ )  

We note that equation (5.2%) leads to the well known result 

( p m i )  = (1  /n)[exp( - l%i I2/4D~)]/(4nD~)’/’ 

(2 < 2,) (5.224 

for a free particle diffusing with an effective diffusion constant given by equation (5.18). 
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6. Concluding remarks 

A first remark concems the failure of the formalism in dealing with the two-dimensional 
(2D) case. Direct application of the formalism, as it stands, leads to the result that in a 2D 
disordered lattice there is no diffusion, the random walker being confined in a finite cluster 
for any value of Z. This result clearly contradicts physical expectations and indicates a 
breakdown of the approximations adopted in amiving at equation (4.14). A peculiarity of 
random walks in ZD ordered lattices is that the average number of visits to a given site is 
infinite, independent of the number of nearest neighbours. Assuming that this is also the 
case for random walks in disordered lattices, we see that, contrary to the 3D and higher- 
dimensional cases, there is no upper bound for the restricted Green functions discussed 
in section 4. In this case, therefore, the approximation of considering all restricted Green 
functions to be equal to a constant site-independent value is clearly not justifiable and, 
consequently, series (4.1~) and (4.ld) cannot be approximated by a geometrical series, 
invalidating all the subsequent results. The 2~ case has, therefore. to be handled by a 
different method. 

It is generally accepted that the cluster properties near and at the percolation threshold 
associated with the site and bond percolation problems in ordered lattices are only affected 
by dimensionality. This universality concept asserts that critical exponents and the shape of 
the scaling functions are dimensional invariants, being independent of the peculiarities of 
the lattice. If this universality concept holds, the percolation problem in, say, an SC lattice, 
should yield the same exponents as the percolation problem in that lattice when second, 
third and subsequent neighbours are taken into account. In the case of an sc lattice, if we 
characterize the sites linked to any particular site by a length parameter uo. such that all 
sites inside a sphere of radius uo centred at a given site are considered to be linked to this 
site, then the model we are investigating is equivalent to the corresponding site percolation 
problem in the limit in which a0 is very large when compared to the lattice parameter. 
Hence it seems that the model under consideration should belong to the same universality 
class as the site and bond percolation problems in ordered lattices. 

We next compare our results with equivalent results for percolation in ordered lattices. 
Using the standard notation for the critical exponents and making use of the usual scaling 
and hyperscaling relations (Grimmeti 1989a, Stauffer 1979, 1991). we obtain the following 
values for three dimensions: y = 2, U = 1, j3 = 4. 6 = 5 ,  A = :, q = 0, p = 2 and 
(Y = -1. There is some scatter in the published data for ordered lattices; the best results 
given by Stauffer (1986) are y = 1.76, U = 0.88, j3 = 0.44, 6 = 5.00, A = 2.20, q = 0, 
p = 2 and (Y = -0.64. Our approximation gives results in good qualitative agreement. For 
dimensions greater than four, it is shown in appendix A that equation (5.1). in the limit 
m + Of, assumes the form 

( Z - s / m ) ( l + m ) Z / [ ( l + m ) Z - s l = Z , - B m  (6.1) 

where B is a constant. Following the procedure outlined for the 3D case, the values y = 1 
and U = f are obtained. Ford = 4, the correction on the right-hand side of equation (6.1) 
has the form m In (m)  and it can be shown that 

(W 0: [ I / &  - z)]1n[l/(zC - z)] (6.20) 

(6.2b) 

Therefore, in our approximation, the upper dimension, beyond which the critical exponents 
attain mean field values, is d = 4. The discrepancy between this result and the widely 

0: [ l / (zC - Z)’”]{I~[I / (Z~ - z)])”‘. 
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accepted one (Stauffer 1979). that for percolation problems the upper critical dimension is 
d = 6. remains to be understood. A brief analysis of the preceding results reveals that 
the present model yields the same critical exponents as an n-component vector model with 
symmetry O(n) in the limit n + CO, or as the spherical model (Itzykson and Drouffe 1991) 
for the treatment of thermal phase bansitions in magnetic systems (see appendix A). Here, 
as in these models, the lower critical dimension, below which there is no transition, is 
d = 2, while the upper dimension, beyond which mean field results hold, is d = 4. 

Gefen and co-workers (1983) discussed the features of a random walk near and at the 
percolation threshold. Based on arguments of self-similarity they anive at the result that 
the mean square displacement of a random walker on a cluster at the percolation threshold 
should behave as 

L F Perondi and R J Elliott 

(6.3) 

Arguing that both finite and infinite clusters near the percolation threshold should also be 
self-similar in scales L which are much smaller than the correlation length 6, they conclude 
that equation (6.3) should also hold for finite and infinite clusters near the percolation 
threshold for times such that ( r ( f ) )  << e .  They assert that the exponent -9 is related to the 
conductivity exponent p through the relation 

( r 2 ( t ) )  mr 2 l l2 ta I  . 

-9 = (M - B ) / v  (6.4) 

and by straightforward arguments show that the diffusion constant in an infinite cluster 
above the percolation threshold should behave as 

D 0: t-R. (6.5) 

They propose a general scaling form for the mean square displacement from which these 
results would be derived 

(rZ(t))  t t - ” * ( t / P )  (6.4) 

where (+) and (-) denote above and below the percolation threshold, respectively. 
Comparing equations (6.3) and (5.14b) we see that the present formalism reproduces 
equation (6.3) with the exponent 9 = 1. Identifying the correlation length with 

= (Z - Z J ”  

we note that equation (6.5) is also reproduced. Equations ( 5 . 1 3 ~ )  and (5.166) can be cast, 
respectively, in the form 

(W) = [tt-”(f/t’”)-’][l- ev(-t/tw)l (6.7~)  

(Rz ( t ) )  m t$-’[1 + (2A/J;r)(f/62tR)-”2] (6.7b) 

showing that the functional form (6.6) is also reproduced. Recent simulation results suggest 
that 9 for 3D lies in the range 1.626 < 9 < 1.897 (Roman 1990, Duering and Roman 1991). 

The Laplace transformed version of equation (6.6) is equivalent to a general functional 
form previously proposed by Straley (1980). In its essential form it  is written as 

( R Z ( S ) )  = ( Q * / S Z ) F ( S E - Y )  (6.8) 
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with t = ( p  - pel. It is assumed that the function F depends explicitly on p and is such that 
F(0) = 0 for p c pc and F(0)  # 0 for p D pc .  Straley also proposed asymptotic explicit 
functional forms. For p < pc ,  a form previously suggested by Mitescu andRoussenq (1983) 
was assumed 

(RZ(t)) = RL[I -aexp(-t/T)] ( 6 . 9 ~ )  

while for p > pc the following form was conjectured: 

d(R2(r))/dt = 2D[1 + cexp(-r/r)l. (6.9b) 

In the above equations, Q and c are constants of order unity. By comparing the Laurent 
series of equations (6.90) and (6.9b) with that corresponding to equation (6.8) the following 
relations are obtained 

(6.10a) 
(6.10b) 
(6.10~) 
(6.10d) 

If we replace E by IZ - Zc], it is easily checked that the Laplace transformations of 
equations ( 6 . 7 ~ )  and (6.7b) satisfy equation (6.8) with the exponents x = 1 and y = 3. By 
comparing equations ( 6 . 7 ~ )  and (6.7b) with equations ( 6 . 9 ~ )  and (6.9b), it is seen that the 
explicit functional form (6.9a) is exactly reproduced while (6.9b) is not. In the latter case, 
instead of a dampened exponential, an inverse square mot in t / r  is obtained, implying a 
much longer saturation time. The relations (6.10) are all satisfied. 

We now consider the geometrical properties of the incipient infinite cluster predicted 
by the present approximation. It has been established that the diagonal element of the self- 
correlation function at the critical concentration (Alexander and Orbach 1982) should scale 
according to 

(Pij) a t-d+f* 2 = z, 

where df is the fractal dimension of the incipient infinite cluster and d,  = 2 + 0 is the 
anomalous diffusion exponent From equation (5 .14~)  it is seen that df = 2, since 0 = 1 as 
has been seen above. On the other hand, it is a well established result that df = d - B/u 
(Kapitulnik er a1 1983). According to the values of y and w obtained from the analysis 
of the region Z 4 Z,, we'would then have that df = $. The present approach therefore 
fails in the description of the geometrical properties of the incipient infinite cluster. We 
interpret this fact as a direct consequence of the approximation of considering the restricted 
Green functions to be equal to a constant, independent of the sites with which they are 
associated. This simplification establishes an equivalence between sites, which should 
hold, for instance, for the backbone sites but not for the sites belonging to ramifications, 
particularly thin dendrites. We therefore consider that the exponents obtained for Z = Z, 
are more appropriate to the backbone than to the whole of the incipient infinite cluster. 
The backbone of the incipient infinite cluster is itself a fractal object with fractal dimension 
ds = d - pe /v  (Kirkpatrick 1978). Assuming ds = 2 and U = 1 we obtain Be = 1. These 
results are in reasonable agreement with the simulation results de = 1.77f0.07 ( H e m m m  
et al 1984) and PB = 0.9 k 0.1 (Kirkpatrick 1978). Also, according to Grimmett (1989b) 



6874 

de = d - 2,¶/u, which yields ds = 2 if we use the previous results for ,9 and U. These 
results lend some support to the above interpretation. 

From equations (5.22) other results concerning the subcritical phase as well as the 
incipient infinite cluster can be derived. From equation (5.22a), the self-correlation function 
for Z < Z,, apart from unimportant numerical factors, is seen to have the form 

L F Perondi and R J Ellioft 

(P(R)) o[ 12, - ZIZ[exp(-IZc - ~l lRl ) ] / l~ l .  (6.11) 

This expression can be related to static distribution functions such as the probability density 
that there is an open path connecting the origin to a site at R, 7(R), in the following way. 
Let f (N,  R )  be the number of sites in the element of volume d R  at R of a cluster with 
N sites, where R is measured from the centre of gravity of the cluster. If p(N)dN is the 
probability that the cluster to which the origin belongs has a number of sites between N 
and N + dN, then the averaged self-conelation function can be expressed by 

(6.12) 

since the steady-state probability of occupation of any site in a finite cluster with N sites 
is 1/N. In the spirit of the approximations adopted in section 4, this expression can be 
approximated by 

( P ( W  = f UN), R)/(N) (6.13) 

where (N) is the average number of sites in the cluster to which the origin belongs. 
Identifying f ( (N) ,R)  with r(R) and by comparing equation (6.13) with equation (6.11) 
the following result is obtained: 

7(R) = lex~(-lRl/S)I/lRI (6.14) 

where we have made use of equations (5.10). (5.1 1) and(5.13b). It is generally hypothesized 
that r (R)  obeys the scaling form (Grimmett 1989b) 

r (R)  g(lRl/O/lR1d-2cT (6.15) 

where g(x) + 0 faster than any power of x - I  as x -+ 03. Equation (6.14) satisfies this 
scaling ansatz with q = 0. The value of q thus obtained is consistent with the value 
obtained from the normal scaling and hyperscaling relations with y = 2 and w = 1. Also. 
g(x) is believed to be a negative exponential (Grimmett 1989~). At 2 = 2,. starting from 
equation (5.22h) and using the steepest-descent method for the approximate evaluation of 
the inverse Laplace transform, the following asymptotic expressions for the time-dependent 
self-correlation function are obtained 

(P(R, 1 ) )  m (I/tZ/31Rl)h(lRl/t'13) IRl/t1/3 (( 1 (6.16a) 

(P (R , f ) )  M (l/~2~31RI)(IRl/t'~3)''4exp[-(IRl/f 113 ) 312 ] IRl/t'/3 >> 1 (6.16b) 

where 
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These are asymptotic results valid for large t and large 1RI. It is expected that the self- 
correlation function at the percolation threshold obeys the general scaling form (Havlin and 
Ben-Avraham 1987) 

( P  (R, 1 ) )  rx ( I R l d ' - d / t d ' i d . ) n ( l R l / r l ' d " )  (6.17) 

where n(x) + 0 faster than any power of x - ]  as x + CO. Equations (6.16) are consistent 
with equation (6.17) provided that df = 2. Equation (6.16b), in particular, is quite similar 
to an expression obtained by Guyer (1984), through a numerical renormalization method, 
for the Sierpinski gasket 

( P  (R, t ) }  rx (IRIdf-d/tdfldw) exp[-(IRl/r'idw)U] (6.18,) 

where 

U = (1 - I / d w ) - ' .  (6.18b) 

We note that the value of U in equation (6.16b) is in accordance with equation (6.18b). 
We conclude by noting that the proposed method, despite some shortcomings, yields 

results that comply with the minimum requirements for the description of the diffusion 
phenomenon in a disordered system. Specifically, a percolation threshold is predicted, 
separating a nondiffusive regime from a diffusive one, with the selfsorrelation function 
and the mean square displacement assuming scaling forms which are believed to hold near 
and at a critical point. The actual critical exponents obtained are only approximate. This is 
in part due to the fact that the model, in averaging over sites. does not fully reproduce the 
special geometry of the clusters close to the percolation threshold. However, it does give an 
overall description of the properties of diffusion for a specific form of spatially disordered 
lattice. 

Appendix A. Small-m expansion 

We consider the expansion of 

for small m in general dimension d .  The constant Ad is the area of the unit sphere in d 
dimensions and is given by 

Ad = ',kd'z/ r(d/2). (-42) 

The normalized Fourier transform of the hopping rate has the following small-IKI 
expansion: 

J ( K )  Z= ~ ( o )  - AK* (A3) 

where 

J(0) = Ad/d 

A = Ad/2d(d + 2). 
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For m = 0 and K = 0 the integrand in equation (AI) is singular and hence cannot be 
expanded in powers of m for general K .  We consider the following partition of the interval 
of integration: 

L F Perondi a n d  R J Elliott 

I -  = I'" +Lo +.r 
where 

KO = d m  
and A is a parameter small enough for the expansion (A3) to be valid in the interval (0, A). 
x is an arbitrary parameter that satisfies the relations 

X > l  

X K O  < A .  

In the interval (0, x K O )  we have 

l8Il-'W 

tan(tqd-ld0. 
A 

d-1 K d K = -  rKn J(0)' 
M I E L  m J ( 0 ) + A K Z  (A7) 

In the interval ( x K 0 ,  A), the integrand can be expanded in powers of KO. For odd d the 
following result is obtained 

A J02 K d - l d k  
M2(Ko'  *) 6, m J ( 0 )  + AKZ 

d - 2 - 2 p Xd-Z-2p 
Kgd-') (- I )  P 

J ( 0 ) z  Z P  
% - x ( d  A p=o - 2 - 2 p  - d - 2 - 2 p  

J(O)2 Xd-2-21, 
% Mz(0, A) - - (-l)pKgd-2 +o(m). 

p-0 A d - 2 - 2 p  

For even d there are logarithmic corrections. In particular ford = 4 one obtains 

&(KO,  A) = Md0, A) + [ J ( O ) ' / A ] 6 m  In ( m )  + o(m). 

The integral over the interval (A, eo) has only corrections of order m: 

649) 

M3(KO. eo) = W O ,  00) + O W .  ( A W  

Putting together these results, and noting that by definition 

ZC = [ A d / ( 2 n ) d ] [ M z ( 0 ,  A) + &(O, m)] 

we obtain for 2 c d < 4 

I(WI) = ZC - [ A d / ( 2 R ) d ] [ J ( 0 ) Z / A ] [ 2 ( d  + 2)]'d-2'/2fdf?z'd-z)/2 t (Al l )  
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where the constant fd is defined by the expansion 

For d = 3, this constant assumes the value fd = r / 2  and the result 

I(m) = Z, - +fiijm''' 

is obtained. For d = 4,  using the result (A9) we obtain 

(AW 

I(m) = 2, + $mIn m + o(m). ( ~ 1 4 )  

For d > 4 the correction is o(m) as can be checked from the previous results. 

cluster behaves as 
From the results of section 4 we have that below Z,, the number of sites in the average 

(A15a) ZI(d-2) (N) cx I/m cx I / (& - Z) 

while the correlation length behaves as 

8 cx l/m'JZ a I/(z, - ~ ) l ' ( ~ - ~ ) .  (A156) 

For 2 c d < 4 the exponents y and v are hence respectively given by 2 / ( d  - 2) and 
I/(d - 2 ) ,  which are similar to the corresponding results for the spherical model. 

Appendix E. Approximations in the region 2 i 2, 

In this appendix we discuss some aspects of the approximation involved in the treatment of 
the region Z 4 2,. 

From the results of section 5, we have that for Z c 2, the long-time average value of 
the restricted Green functions is given by 

G = l/(mo + I)EO 
where mo is given by 

mo = [(Z - Z,) /A]* .  (B2) 

We note that equation (BI) contradicts equation (4.3b). This is a consequence of the fact 
that the series for (r,i) and (Xi;), for Z < Z,, have been approximated by an infinite 
series. According to the rearrangements (2.9) and (2.10) the corresponding series should 
have a finite number of terms in this region. In formal terms the finite series 

where N is the number of sites in the average finite cluster and G' is the actual value of 
the average of the restricted Green functions, has been replaced by the infinite series (4.46). 
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The value of G in the latter series is therefore an effective value. If we use equation @3), 
the long-time normalization equation reads 

L F Perondi and R J Elliott 

From this result, the following relationship between G’ and C is obtained: 

{ 1 - [nC’J(0) ]N} / [ l  - nG’J(O)] = 1/[1 -nCJ(O)] = (mo + l)/mo. 

If we assume that nG‘J(0) + to 1 fors -+ Ot as in the case when the infinite percolating 
cluster exists, equation (BS) implies that 

N 2 (mo + l ) /mo. (B6) 

This condition is equivalent to equation (5.10). We conclude. therefore, that for Z .c Z, 
and large N the actual value of G tends to unity and hence condition (4.3b) is not violated. 
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